
© Internet Initiative Japan Inc.

W3C Standardization: RDF Dataset Canonicalization

*1 Dave Longley, Gregg Kellogg, Dan Yamamoto: RDF Dataset Canonicalization. W3C Recommendation, May 21, 2024 (https://www.w3.org/TR/rdfcanon/).

*2 Richard Cyganiak, David Wood, Markus Lanthaler: RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, February 25, 2014 (https://www.w3.org/TR/

rdf11- concepts/).

*3 Olaf Hartig, Pierre-Antoine Champin, Gregg Kellogg, Andy Seaborne: RDF 1.2 Concepts and Abstract Syntax. W3C Working Draft, May 2, 2024 (https://www.

w3.org/TR/2024/WD-rdf12-concepts-20240502/).

*4 Japan Search (https://jpsearch.go.jp/).

*5 Dan Brickley, R.V. Guha: RDF Schema 1.1. W3C Recommendation, February 25, 2014 (https://www.w3.org/TR/rdf11-schema/).

*6 To be precise, an Internationalized Resource Identifier (IRI), which is a generalization of a URL, is used.

*7 In this example, the object is expressed as a string rather than as a URL, but it is common for triples to have a URL as the object.

2.1 Introduction
In this article, I describe RDF Dataset Canonicalization*1,

which became a World Wide Web Consortium (W3C) recom-

mendation in May 2024. I was involved in the standardization

process at W3C. RDF Dataset Canonicalization is an algo-

rithm for canonicalizing (i.e., normalizing or generating a serial

canonicalization of) data represented using the Resource

Description Framework (RDF). I explain what RDF is, what

the process of RDF canonicalization entails, and when it is

needed. I also go over the path we took to standardization

at W3C and describe the canonicalization procedure in some

detail.

2.2 What is RDF?
RDF is a W3C standard framework for describing information

(resources) on the web. RDF makes it easy to link data

between different databases and applications. It is widely

used in areas such as the life sciences, pharmacology, and

libraries for this reason. The first version became a W3C

recommendation in 1999, and RDF 1.1*2 became a recom-

mendation in 2004. As of this writing (May 2024), work

on the RDF 1.2*3 standard is underway.

RDF represents information with three elements: a subject,

a predicate, and an object. A set of these three elements

is called an RDF triple. By way of example, the following

is an RDF triple on the classic Japanese literary work

The Pillow Book (Makura no Soshi, rendered below as

“Makuranosoushi” in keeping with the Japan Search records)

obtained from Japan Search and slightly modified for this

article*4, a site that lets you search through a wide range

of Japanese content.

• Subject: <https://jpsearch.go.jp/data/bibnl-20853658>

• Predicate: <https://www.w3.org/2000/01/rdf-schema#label>

• Object: “Makuranosoushi”

RDF triples can be read like a normal sentence, as “the predi-

cate of the subject is the object.” That is, the RDF triple here can

be read as “the label of bibnl-20853658 is Makuranosoushi.”

Here, the subject https://jpsearch.go.jp/data/bibnl-20853658

is an identifier assigned to a book by Japan Search. The

predicate <https://www.w3.org/2000/01/rdf-schema#label>

is a term defined in the W3C RDF Schema*5, and the object

that follows it, “Makuranosoushi”, is the label (brief descrip-

tion) of the subject. Hence, this RDF triple indicates that

the information with identifier <https://jpsearch.go.jp/data/

bibnl-2085658> takes the label “Makuranosoushi”.

So, RDF triples represent a lot of information using URLs*6

like <https://jpsearch.go.jp/data/bibnl-20853658>*7. URLs

are used so as to accurately convey the information that the

data creator is trying to represent. If the subject and predicate

were expressed without a URL as simply “20853658” and

“label”, readers would find it difficult to correctly under-

stand where the 20853658 identifier comes from and what

the meaning of the predicate label is.

RDF triples can also be drawn as a diagram with two nodes

(information contained in ovals or boxes) connected by an

arrow, as in Figure 1. For ease of reading, part of the URL in

Figure 1, https://jpsearch.go.jp/data/, is abbreviated to “data:”.

Similarly, http://www.w3.org/2000/01/rdf-schema# is re-

placed by “rdfs:”. I use this abbreviated notation below as

well.

A collection of RDF triples is called an RDF graph. Retrieving

additional RDF triples on The Pillow Book from Japan Search

enables us to create an RDF graph like that in Figure 2.

2. Focused Research (1)

Figure 1: Example of an RDF Triple Referring to Makuranosoushi

data:bibnl-20853658
rdfs:label

Makuranosoushi

12

https://www.w3.org/TR/rdf11- concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240502/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240502/

Vol. 63Aug.2024

2. Focused Research (1)

© Internet Initiative Japan Inc.

In this RDF graph, the label for data:bibnl-20853658 is

“Makuranosoushi”, and we can also see that Sei shounagon

was involved in the book’s production and that Moriya

Shinsuke was involved in its translation.

As mentioned, a collection of RDF triples forms an RDF graph.

Additionally, a collection of RDF graphs is called an RDF

dataset. RDF Dataset Canonicalization is, as the name

suggests, a method of canonicalizing RDF datasets. For sim-

plicity, however, I will not distinguish between RDF graphs

and RDF datasets in this article.

2.3 Blank RDF Nodes
In the example in Figure 2, nodes with the strange names

_ :b152539105 and _ :b152573899 appear. These are a

special type of node called blank nodes and do not have

an identifier (URL). When creating large RDF graphs, for

example, it can be cumbersome to assign URLs to all

nodes. So blank nodes without URLs are sometimes used

for intermediate nodes not connected to other graphs.

Names given to blank nodes are only temporary. Within the

same RDF graph, the names of blank nodes may change

depending on the system or environment in which they are

handled. For example, while the RDF graph in Figure 3 has

_ :hoge and _ :fuga instead of Figure 2’s _ :b152539105

and _ :b152573899, respectively, it is treated as being the

same as the RDF graph before those name replacements

(more precisely, it is isomorphic to that graph).

Figure 2: An RDF Graph for The Pillow Book

Figure 3: Another RDF Graph for The Pillow Book

data:bibnl-20853658

Makuranosoushi
rdfs:label

_:b152539105
jps:agential

role:Creation jps:relationType

chname:Sei-shounagonjps:value

role:Creation-translation jps:relationType

ncname:Moriya-Shinsuke jps:value

_:b152573899

jps:agential

data:bibnl-20853658

Makuranosoushi
rdfs:label

_:hoge
jps:agential

role:Creation jps:relationType

chname:Sei-shounagonjps:value

role:Creation-translation jps:relationType

ncname:Moriya-Shinsukejps:value

_:fuga

jps:agential

1313

© Internet Initiative Japan Inc.

*8 Gregg Kellogg, Pierre-Antoine Champin, Dave Longley: JSON-LD 1.1. W3C Recommendation, July 16, 2020 (https://www.w3.org/TR/json-ld11/).

*9 “c14n” is an abbreviation of “canonicalization”.

An advantage of this is that RDF graph creators need not

worry about naming blank nodes. Another advantage is

that these names can be omitted when converting the RDF

graph into data. For example, the RDF graph in Figure 3 can

be expressed as follows using the JSON-LD*8 specification.

Here, there is no need to worry about the names of blank

nodes.

2.4 Canonicalization
Blank nodes are useful, but their lack of a fixed name can

sometimes cause problems. For example, handling blank

nodes can be problematic when you want to check whether

two RDF graphs are isomorphic, determine the differences

between graphs, or determine whether an RDF graph has

been updated. Also, if an RDF graph is digitally signed by

its creator, verification will fail if the names of blank nodes

when the graph is signed differ from the names of blank

nodes when the verification attempt is made, but due to

the nature of blank nodes, it is not possible to guarantee

that the names will be the same.

We therefore needed a method of assigning fixed names to

blank nodes that would be independent of the system or

environment. That’s where RDF Dataset Canonicalization,

the subject of this article, comes in. When canonicalized,

the two RDF graphs in Figures 2 and 3, for example, are

converted into the same graph, which is shown in Figure 4.

Once canonicalized, the blank nodes take the new names

_ :c14n0 and _ :c14n1*9. These names are calculated

using a predetermined method based on the URLs and

strings that appear in the graph and the structure of the

graph, and they are not influenced by the values origi-

nally assigned to the blank nodes, i.e., _ :b152539105,

_ :hoge, and so forth. Thus, the same graph can be

Figure 4: Example of a Canonicalized RDF Graph

role:Creation

chname:Sei-shounagon

role:Creation-translation

ncname:Moriya-Shinsuke

Makuranosoushi

data:bibnl-20853658

rdfs:label

_:c14n1
jps:agential

jps:relationType

jps:value

jps:relationType

jps:value

_:c14n0

jps:agential

{
 "@context": { ... },
 "@id": "data:bibnl-20853658",
 "rdfs:label": "Makuranosoushi",
 "jps:agential": [
 {
 "jps:relationType": "role:Creation",
 "jps:value": "chname:Sei-shounagon"
 },
 {
 "jps:relationType": "role:Creation-translation",
 "jps:value": "ncname:Moriya-Shinsuke"
 }
]
}

14

Vol. 63Aug.2024

2. Focused Research (1)

© Internet Initiative Japan Inc.

*10 Generally, data in n-quads form does not need to have been sorted, and there is no limit on the number of whitespace or line feed characters used as delimiters,

but here we use data sorted in lexicographical order and limit the number of delimiter characters to one. This is called the canonical n-quads form.

*11 Internet Infrastructure Review Vol. 52, “2. Focused Research (1): Verifiable Credentials and BBS+ Signatures” (https://www.iij.ad.jp/en/dev/iir/052.html). The LD

Canonicalization referred to in Vol. 52 is the former name of RDF Dataset Canonicalization discussed here.

*12 Email by Phil Archer (https://lists.w3.org/Archives/Public/semantic-web/2024May/0030.html).

*13 W3C RDF Dataset Canonicalization and Hash Working Group (https://www.w3.org/groups/wg/rch/).

*14 RDF Dataset Canonicalization and Hash Working Group Charter (https://w3c.github.io/rch-wg-charter/).

*15 Dan Yamamoto, Yuji Suga, Kazue Sako, Formalising Linked-Data based Verifiable Credentials for Selective Disclosure. 2022 IEEE European Symposium on Security

andPrivacy Workshops (EuroS&PW) (https://doi.org/10.1109/EuroSPW55150.2022.00013).

obtained regardless of what names were assigned to the

original blank nodes.

Once the blank node names are determined, a representation

of the dataset called its canonical n-quads form*10 can be

generated, which, in our case, gives the canonicalized data

shown in Figure 5. Using the canonicalized data, it is easy

to calculate RDF graph differences, check for updates, and

calculate digital signatures and hashes.

W3C Verifiable Credentials, a form of digital credentials

that we covered in IIR Vol.52 (https://www.iij.ad.jp/en/dev/

iir/052.html)*11, are RDF datasets with a digital signa-

ture. Canonicalizing blank node names using RDF Dataset

Canonicalization before applying the digital signature

guarantees that the data that is signed will be the same as

the data that is verified.

2.5 The Standardization Effort
Standardization is typically a lengthy process. The standard-

ization of RDF Dataset Canonicalization took over a decade.

Although the discussion around it started early on, one

reason it took so long is that it took ages to arrive at a

consensus on the need for standardization and what the optimal

method would be*12.

Discussions on the canonicalization specification first

began at W3C from 2009 to 2010. In 2012, Dave Longley

and Manu Sporny of Digital Bazaar proposed the Universal

RDF Graph Normalization Algorithm (URGNA2012). This was

followed three years later by a revised version, the Universal

RDF Dataset Normalization Algorithm (URDNA2015), which

became the basis for the now standardized specification.

The discussion around verifiable credentials subsequently

ramped up at W3C, and 2021 saw the proposed formation

of the Linked Data Signatures Working Group to work on

methods of digitally signing RDF data. This effort was

terminated, however, after it failed to reach consensus on

the standardization of the overall signing process. The RDF

Dataset Canonicalization and Hash Working Group (RCH

WG)*13, focused on RDF canonicalization, was proposed as

an alternative and approved in July 2022.

And so the work to make RDF Canonicalization a W3C

Recommendation finally began. On May 21, 2024, this

standardization effort reached its goal of producing a W3C

Recommendation*14.

Following an invitation from the WG chair, I joined RCH

WG as an Invited Expert in August 2022, and I also served

as an Editor from November that year. The invitation was

prompted by an article on verifiable credentials written

by me and colleagues for an international conference*15,

which caught the interest of the WG co-chair.

Figure 5: The Result of Canonicalization (several URLs modified for translation purposes in this article)

<https://jpsearch.go.jp/data/bibnl-20853658> <https://jpsearch.go.jp/term/property#agential> _:c14n0 .
<https://jpsearch.go.jp/data/bibnl-20853658> <https://jpsearch.go.jp/term/property#agential> _:c14n1 .
<https://jpsearch.go.jp/data/bibnl-20853658> <rdfs:label>"Makuranosoushi".
_:c14n0 <https://jpsearch.go.jp/term/property#relationType> <https://jpsearch.go.jp/term/role/Creation-translation>.
_:c14n0 <https://jpsearch.go.jp/term/property#value> <https://jpsearch.go.jp/entity/ncname/Moriya-Shinsuke>.
_:c14n1 <https://jpsearch.go.jp/term/property#relationType> <https://jpsearch.go.jp/term/role/Creation>.
_:c14n1 <https://jpsearch.go.jp/term/property#value> <https://jpsearch.go.jp/entity/chname/Sei-Shounagon>.

1515

© Internet Initiative Japan Inc.

*16 Gregg Kellogg: RDF Dataset Canonicalization and Hash 1.0 Processor Conformance (https://w3c.github.io/rdf-canon/reports/).

*17 zkp-ld/rdf-canon (https://github.com/zkp-ld/rdf-canon).

*18 To be precise, they are sorted in Unicode code point order.

In the canonicalization step, a value called the first degree

hash is calculated for each blank node in the graph. This

is done by passing the information around the blank node

into a special function called a hash function to obtain a

fixed-length block of data called the hash value. Intuitively,

this constitutes giving a name to blank nodes using the

information surrounding it.

If the first degree hashes assigned to the blank nodes are all

different, then they can be sorted in lexicographical order*18

so as to assign an order to the blank nodes. Labeling the

blank nodes in this order—i.e., _ :c14n0, _ :c14n1, _ :c14n2,

and so on—completes the canonicalization process.

I will now explain this process in detail using the example

in Figure 6. This RDF graph contains four nodes, two of

which (:p and :u) are normal nodes that have URLs, and the

remaining two (_ :e0 and _ :e1) are blank nodes.

Extracting just the RDF triple containing blank node _ :e0

and representing it in canonical n-quads form yields this:

:p :q _:e0 .
_:e0 :s :u .

This corresponds to the information surrounding _ :e0.

Here, we replace the blank node’s “temporary” name of

e0 with a, which yields the following string:

:p :q _:a .
_:a :s :u .

RCH WG mainly conducts its activities via GitHub discus-

sions and fortnightly conference calls. Anyone can raise

issues and give proposed solutions via GitHub, while on

the conference calls, working group members engage in

discussion to resolve issues and reach a consensus. The

results of all this go through some editing on GitHub and

then eventually end up in the specifications. This was my

first involvement in standardization, and while I found it

hard to keep up with the expert discussion, I made an effort to

contribute in any way I could: proposing wordings, reviewing

pull requests, and providing reference implementations, and

so on.

It is crucial that W3C specifications are created in such a

way that readers are able to correctly implement the con-

tent. As of this of writing (May 2024), nine open-source

implementations of RDF Dataset Canonicalization have

been released, having been developed in a wide range of

languages: C++, Elixir, Java, JavaScript, Ruby, Rust, and

TypeScript*16. I have also released an open-source imple-

mentation in Rust*17.

2.6 Canonicalization Procedure
The algorithm defined in the RDF Dataset Canonicalization

specification is named RDF Canonicalization algorithm

version 1.0, commonly known as RDFC-1.0. Here, I give an

overview of RDFC-1.0.

RDFC-1.0 consists of two steps: canonicalization, in which

blank nodes in the input RDF graph are labeled, and

serialization, in which the canonical n-quads form of the

canonicalized RDF graph is generated.

Figure 6: Example of an RDF Graph with Two Blank Nodes

:u

_:e0

:q :s

:r :t

_:e1

:p

16

Vol. 63Aug.2024

2. Focused Research (1)

© Internet Initiative Japan Inc.

This is passed into the hash function, and the resulting hexa-

decimal bit string, 21d1dd5ba21f3dee9d76c0c00c260fa6f5d5d

65315099e553026f4828d0dc77a, is used as the first degree

hash of blank node _ :e0. Information about _ :e0 is embedded

in this first degree hash value, and it can be used to distinguish

_ :e0 from other blank nodes.

Similarly, extracting the RDF triple containing _ :e1 gives,

:p :r _:e1 .
_:e1 :t :u .

and with e1 replaced by a, as before,

:p :r _:a .
_:a :t :u .

and we then generate a first degree hash value for _ :e1 of

6fa0b9bdb376852b5743ff39ca4cbf7ea14d34966b-

2828478fbf222e7c764473.

When sorted in lexicographical order, the first degree hash

of _ :e0, which starts with 2, comes before the first degree

hash of _ :e1, which starts with 6. So we have been able

to determine an ordering for e0 and e1. We then follow this

order and assign the canonicalization identifier _ :c14n0 to

_ :e0 and _ :c14n1 to _ :e1, completing the canonicalization

process.

Crucially, the canonicalization result is always the same,

regardless of what names are given to the blank nodes

before canonicalization. Indeed, using the example in

Figure 6, we can check that the first degree hash values do

not change even if we replace _ :e0 with _ :hoge and _ :e1

with _ :fuga. As part of the process of calculating the first

degree hash values, all blank node names are replaced by

a, and this means that the end result is independent of the

names originally given to the blank nodes.

RDF graphs that are not too complicated, such as the example

in Figure 6, can be canonicalized by calculating just the

first degree hashes, and this is relatively easy to do. But

depending on the RDF graph, you can end up assigning the

same first degree hash to different blank nodes. The graph in

Figure 7, for example, contains blank nodes surrounded

by information that is exactly the same, and in such sit-

uations, the nodes will be assigned the same first degree

hash.

Looking at _ :e0 and _ :e1, we can see that both are objects

reached from subject :p via predicate :q, and furthermore,

that both are subjects that lead to a blank node object via

predicate :p. Because of this, their first degree hash values

will be exactly the same.

In RDFC-1.0, therefore, n-degree hashes are calculated as

the next viable identification method only in cases of blank

nodes being assigned the same first degree hash. The pro-

cess by which n-degree hashes are calculated in RDFC-1.0

is complicated, so I will not explain it here. The interested

reader is directed to the specification.

Figure 7: Example of a More Complicated RDF Graph

_:e1 _:e3

:q

:p

:p

:q

:r

:e2:e0

:p

1717

© Internet Initiative Japan Inc.

*19 The specification refers to these as poison datasets. The canonicalization of RDF graphs is known to be as difficult as the graph isomorphism problem, so depending

on the input, there will inevitably be cases that require extremely long calculation times.

2.7 Canonicalization Challenges and Solutions
As should now be evident, RDF Dataset Canonicalization

is, in essence, a way of obtaining canonicalized names

by ordering blank nodes. So to canonicalize an RDF

graph that does not contain any blank nodes, there is no

need to calculate any first degree or n-degree hashes;

all you have to do is perform the simple (serialization)

process of representing the RDF graph in n-quads form

and then sorting.

There is a misconception that RDF Dataset Canonicalization

involves unnecessarily complicated processing, but the

complexity of canonicalization depends on the number of

blank nodes in the input RDF graph and the structure of

the graph if it contains blank nodes. In practice, the process

can be completed quickly with just the simple first degree

hash value calculations.

Even so, there are RDF graphs with special structures

containing many blank nodes for which it can take an

extremely long time to calculate the n-degree hashes*19.

For this reason, RDFC-1.0 implementations are required

to place an upper limit on the number of n-degree hash

calculations and terminate the process prematurely with

an error if the limit is exceeded.

You also need to keep in mind that if an RDF graph contains

personal data or confidential information, it may be possi-

ble to partially infer what that information is based on

the canonicalization results. Since the canonicalization

calculations are based on data in the graph, the canon-

icalized names (_ :c14n0 etc.) will “partially” contain

information from the graph.

Consider, for example, the RDF graph in Figure 8 showing

that Alice’s spouse is Bob. Say this graph is canonicalized,

digitally signed, and saved as shown in Figure 9.

Say that at some point, for whatever reason, Alice wants

to communicate that she is married while keeping her

spouse’s name hidden. Using the selective disclosure

mechanism in Verifiable Credentials, she can hide her

Figure 8: RDF Graph about Alice and Bob Figure 9: Canonicalized Form of FIgure 8

Alice

Bob

:name

:name

:spouse

_:hoge

_:fuga

Alice

Bob

:name

:name

:spouse

_:c14n1

_:c14n0

18

Vol. 63Aug.2024

2. Focused Research (1)

© Internet Initiative Japan Inc.

*20 Manu Sporny, Dave Longley, Greg Bernstein, Dmitri Zagidulin, Sebastian Crane: Verifiable Credential Data Integrity 1.0. W3C Candidate Recommendation Draft,

April 28, 2024 (https://www.w3.org/TR/2024/CRD-vc-data-integrity-20240428/).

spouse’s name while ensuring her digital signature remains

valid, and thus create the verifiable RDF graph shown in

Figure 10.

But suppose that a snooper who sees this graph knows

only that Alice’s spouse is either Bob or Charlie (but not

which). This snooper could insert the names Bob and

Charlie, first one and then the other, into the hidden

part marked by *** and run the canonicalization process

again, yielding two graphs with different canonicalized

labels, as in Figure 11. By comparing these graphs with

the graph that Alice published, the snooper would be

able to determine that Alice’s spouse is Bob.

This assumes special circumstances, but it is a property

that you need to be aware of if using RDF Dataset

Canonicalization with verifiable credentials. There is a

discussion on avoiding this sort of problem within W3C

Verifiable Credentials Data Integrity*20, a specification

for protecting the security and privacy of verifiable

credentials.

2.8 Conclusion
I have provided an overview of RDF Dataset Canonicalization,

now a W3C recommendation, looking at the specification

itself and the standardization effort, which I was involved

in. RDF Dataset Canonicalization makes it easier to calcu-

late differences in RDF graphs, check for graph updates,

calculate hashes, and generate digital signatures. This

can streamline data management and make it possible

to imbue RDF graphs with unforgeability and authenticity.

As a user of the specification myself, I utilize it in research

and development on verifiable credentials and their appli-

cations. I hope that this article has piqued your interest in

the topic.

Figure10: RDF Graph with Bob’s Name Hidden Figure 11: Two Different Results

Alice

:name

:name

:spouse

_:c14n1

_:c14n0

Alice

Bob

:name

:name

:spouse

_:c14n1

_:c14n0

Alice

Charlie

:name

:name

:spouse

_:c14n0

_:c14n1

Dan Yamamoto

Senior Engineer, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Dr. Yamamoto has been in his current role since 2021. He is engaged in research on digital identity and information security.

1919

	2.	Focused Research (1)
	2.1	Introduction
	2.2	What is RDF?
	2.3	Blank RDF Nodes
	2.4	Canonicalization
	2.5	The Standardization Effort
	2.6	Canonicalization Procedure
	2.7	Canonicalization Challenges and Solutions
	2.8	Conclusion

